
For Re } 1 the flow rapidly goes over into the potential everywhere except the domain 

n e a r  t h e  s u r f a c e  s i n c e  a s  r + 1 one  o f  t h e  f a c t o r s  i n  t h e  e x p o n e n t  r - -  T 4 r2 t e n d s  t o  

zero. Consequently, no matter how large the value of Re there is always a neighborhood near 

R, ( ~ I i )(cos0 1) will be small, and the whole vis- the surface where the exponent T r-- 4 4 r z 

cous permutation is concentrated in this domain, as corresponds to the physical model of the 
flow in boundary layer theory. 

On the basis of an analysis, the deduction can be made that the method considered per- 
mits, in principle, approximate solutions to be obtained for the complete Navier-Stokes 
equations for a sufficiently large flow range by extending the equally suitable solution ob- 
tained to the domain of larger Re by successive approximations. 
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STEADY-STATE FLOW OF A RIVULET ALONG A SURFACE UNDER THE INFLUENCE 

OF ACCELERATION 

A. F. Tal'drik and O. P. Chernyaev UDC 532.65:532.543 

Consideration is given to dependence of a solution for steady-state flow of a rivulet 
of viscous incompressible liquid on a hard flat wall on the following independent primary 
parameters: density p (kg/ma), kinematic viscosity 9 (m2/sec), and surface tension c (kg/sec 2) 
for the liquid, contact wetting angle ~ at the boundary of the three media, width of the 
main rivulet H (m) [or flow rate in the rivulet Q (ma/sec)], field acceleration a (m/sec 2) 
directed along the wall. The following assumptions were made: only velocity component v 
(m/sec) directed along a equals zero. 

A cross section of the rivulet is a region r bounded by a section with length H from 
the direction of the wall and the arc of a circle at the free surface of the rivulet. The 
arc of the circle and section intersect at an angle equal to =. External pressure P0 is con- 
stant, and tangential stresses at the free surface from the direction of the external medium 
are ignored [I, 2]. 

In region r we find the distribution of velocities v, in particular the maximum velocity, 
flow rate QI, momentum fluxes I, and kinetic energy G in relation to the arguments enumerated 
above. Balance equations for the momentum and continuity for the incompressible Newtonian 
liquid have the form 

( v . v ) v  = - - V p / p + v A v  + a, V.V = O, v = ~/p. ( 1 )  

W i t h  t h e  a s s u m p t i o n s  made a b o v e  i n  a c o o r d i n a t e  s y s t e m  w h e r e  a x i s  OZ i s  d i r e c t e d  a l o n g  a ,  
(I) is brought into the form--v,p/pq-~Av-}-a = 0, since (v.v)v = 0 in view of the assumption 
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that v x = Vy = 0, and ~v/Sz = 0 in view of V'V =0. 

The condition v = 0 is fulfilled at the wall, and at the free surface the rivulet ful- 

fills the condition for balance of momentum [3] 

[ _ p S i j + ~ ( V w j + V j v ~ ) l ~ n i = _  a t + n~, (2)  

where normal n i is directed from the rivulet; [ ]~ indicates the difference in values in 
the external medium and in the rivulet. In a cylindrical coordinate system which is selected 
so that one of the coordinate surfaces coincides with the free surface of the rivulet, only 
the viscous stress tensor components differ from zero ~13 = ~i = ~Ov/ar and ~23 = ~2 = (~)0~0% 
Projection of Eq. (2) on normal n i gives --p + P0 = -~/R, since rijnjni =0 (Ris radiusof curva- 
ture of the free rivulet surface). Projection of Eq. (2) on axis OZ gives ~3v/~r = 0. 

Thus, in the regionr, p = P0 + a/R and VP = 0, i.e.,~Av-~a = 0. At the wall v = 0, 
and at the free surface 8v/Sn = 0. 

We take as scales H and a/9, then 

v = (a~)H2UH(a),  Q = (a/~)H~QH(a), 
(3)  a 2 a s 

I = p . ~  H q H  (~), G = p ~ HSGH (~), 

Where UH(~), QH(~), IH(~), GH(~) are dimensionless velocity, flow rate, momentum flux, and 
kinetic energy of the rivulet with an individual base. 

We increase dimensionless region F with an individual base by a factor of two and we 
place it on a complex plane z = (x, y) with hn z~0 so that angular points of it are found 
at points (-i, 0) and (i, 0), and the center of the section is found at the origin. We in- 
troduce a new variable u = 4UH, then Au = -i in region F. 

We present the solution of u as the sum of partial solution -y2/2 and total solution v: 
u = --y2/2 + v. Then in region F, Av = 0, and v = 0 in section [-I, i] of the actual axis. 
In the arc 

Or~On = [--grad (--y2/2)]n = y(y sin a + cos ~), (4) 

s i n c e  n = (x sin ~, y sin a + cos a). 

I n  o r d e r  t o  f i n d  t h e  h a r m o n i c  f u n c t i o n  o f  v in  r e g i o n  r w i t h  d i s p l a c e m e n t  o f  bounda ry  
c o n d i t i o n s  (411 we c o n t i n u e  v a n a l y t i c a l l y  i n t o  r e g i o n  r '  which  i s  s y m m e t r i c a l  t o  r e g i o n  r 
r e l a t i v e  t o  s e c t i o n  [ - 1 ,  1] o f  t h e  a c t u a l  a x i s  w i t h  t h e  c o n d i t i o n  v ( x ,  - : ] )  = - v ( x ,  y ) .  Th i s  
may be done [4] since v(x, y) = 0 with y = 0, and derivatives are continuous in section [-I, 
i]. In regions F' and F boundary conditions are connected by the relationship 

Or(x, --y)/On = --Ov@, y)/On = y(y sin ~ + cos ~), y i> O. (5)  

F i n d i n g  t h e  h a r m o n i c  f u n c t i o n  in  r e g i o n  F + F' w i t h  c o n d i t i o n s  (5)  i s  e q u i v a l e n t  t o  
f i n d i n g  t h e  c o n f o r m a l  r e p r e s e n t a t i o n  o f  r e g i o n  r + F' in  any c a n o n i c a l  r e g i o n  f o r  which t h e  
s o l u t i o n  method i s  known i f  no rma l  d e r i v a t i v e s  a r e  p r e s c r i b e d  f o r  t h e  ha rmon ic  f u n c t i o n  a t  
t h e  b o u n d a r y  o f  t h e  c a n o n i c  r e g i o n  [ 4 ] .  

We s h a l l  f i n d  t h e  c o n f o r m a l  r e p r e s e n t a t i o n  o f  an i n d i v i d u a l  c i r c l e  o f  complex r e g i o n  
w in  r e g i o n  r + F'  in  complex p l a n e  z .  T r a n s f o r m  z 1 = (1 + w ) / ( 1  - w) c o n v e r t s  t h e  r e g i o n  
w i t h i n  t h e  i n d i v i d u a l  c i r c l e  f rom p l a n e  w i n t o  a r i g h t  h e m i p l a n e  in  z ! .  T r a n s f o r m  z 2 = z~,  
where  c = 2a/~r, c o n v e r t s  t h e  h e m i p l a n e  f rom z l  i n t o  a r e g i o n  bounded by r a y s  emerg ing  f rom 
t h e  o r i g i n  w i t h  a n g l e s  - u  and ~ i n  p l a n e  z 2. T r a n s f o r m  z s = (z  2 - 1 ) / ( z  z + 1) c o n v e r t s  t h e  
a n g l e  formed by t h e  r a y s  f rom p l a n e  z 2 i n t o  r e g i o n  r + r '  in  p l a n e  z.  F i n a l l y  t r a n s f o r m  

z ( w ) = z  a{z z[z l (w) ]}=  ( t+m)  z - ( t - w )  c (6 )  
( l + w ) r  r 

c o n v e r t s  t h e  i n d i v i d u a l  c i r c l e  f rom p l a n e  w i n t o  r e g i o n  r + F'  in  p l a n e  z.  P o i n t s  o f  t h e  
real axis -i, 0, I remain in place. The section of the imaginary axis from 0 to i is converted 
into the height of the rivulet. Transform (6), with the exception of angular points, is 
conformal, i.e., Av = 0 also in circle lwl < i. 

We introduce at the boundary of an individual circle parameter w = e i~. Transform (6) 
determines at the boundary of the region F + F' the dependence of z, y, and ~v/Sn on para- 
meter 7: 
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TABLE i 

=. deg Q. ~H ~ UHM 

30 
60 
90 

t20 
150 

3,2- tO -a 
3,9. |0 -3 
2,4- t0 -~ 

0,i9 
5,3 

i,9.iO -s 
9,7.i0-a 
1,8-10-a 
4,8- iO-~ 

8,6 

t,3.tO-S 
2,6.10 -a 
1,5.10 -~ 
1,3.10 -~ 

t4,4 

8,i- iO -a 
3,4. lO-~ 
9,4.i0-~ 

0,29 
1,55 

The general 
the form 

T r ~ 
+ (7) 

[( y(~) = 2sincz etg-~- + 2 + [tg-~-j ] , OrlOn = y ( y s i n ~ + e o s ~ ) .  (8)  

It is well known [4] that with conformal transform 8v(w)/0n = Ov(z)/Sn[3z/Sw I, where w = e i~, 
and z is determined by (7): 

[ Oz ] 4c (t + w)c-l (i -- w) c-* {[( x)c ( ~)c] . ~ z}-1  
= [(t+w) c + ( t - w f l  z = c  tg-~- 2 + 2 c o s ~ +  ctg-~- . sm-~-c~  . 

Solution of the problem v(w) in an individual circle, when the normal derivative Ov/ 
On(e i~) at the boundary is prescribed, is found by the Din equation [4] 

2~ 

v (u,) = ~ ~ ( 0 9  In I e~  - u'l d~ 
0 

( le  i'r - w t  i s  t h e  d i s t a n c e  f rom p o i n t  w to  a v a r i a b l e  p o i n t  o f  t h e  boundary  a t  t h e  c i r c l e ) .  

s o l u t i o n  f o r  u i n  t h e  upper  h a l f  o f  t h e  i n d i v i d u a l  c i r c l e  in  p l a n e  w t a k e s  

2~ 

O 

Flow rate QH(=), momentum flux IH(=), and kinetic energy GH(~) through the rivulet cross 
section are determined by the expressions 

I~ 

0 0 

(10 r ~ rdrd~ i s  a r e a  o f  an e l e m e n t  i n  p l a n e  z ) .  

A program was composed and c a l c u i a t i o n  was c a r r i e d  o u t  i n  an ES-1040 computer  form 
QH(c0, IH (~ ) ,  GH(~), and UItN in  r e l a t i o n  t o  ~ ( Ta b l e  1) .  

In solving the stated problem in dimensionless form a, ~, and H were selected as scales. 
However, instead of H it is possible to specify Q, and H becomes unknown. Then from (3) we 

obtain Q = a__ H4QH (=) 
W 

HQ(=) = [QH(=)]-*/4 is 
we have 

(_~.)~1, t Qa a \112 Q2a_ 
U = _  _ UQ(o~), I = 9 [ ~ )  tQ(o~), G f g ~ G Q ( ( z  ). 

Here kT] , 9k---~-- ] , p-~- are scales for velocity, momentum flux, and kinetic energy; 

UQ(=), IQ(a), GQ(a) are their corresponding dimensionless parameters (Table 2). 

In Table i parameters with varying contact wetting angles from 30 to 150 ~ change by a 
few orders of magnitude, and in Table 2 they vary within the limits of an order of magnitude, 
differing from unity by not more than an order of magnitude. This means it is possible to 
assume that (Qalv)i/4, p((~a/v) *1~, pQ~a/2v determine the scales for velocity, momentum flux, and 
kinetic energy in a rivulet over a wide range of change in =. 

or H = [QH(~)] -1/4 = (~)t where (Qv/a)*l 4 is scale of length; 

dimensionless width of the main rivulet. Similarly from (3) and (9) 
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TABLE 2 

deg 

30 
60 
90 

t20 
i50 

HQ 

7,4 
4,0 
2,5 
t,5 
0,66 

IQ 

0,33 
0,39 
0,47 
0,57 
0,70 

GQ 

0,t2 
0,i7 
0,25 
0,35 
0,5t 

U H M  

TABLE 3 

deg m 

0,45 
0,53 30 
0,60 60 
0,66 90 

t20 
0,67 t50 

Water 

4,2 t,25 . 
2,3 t,7 
t,4 1,9 
0,84 2,t 
0,37 2,i 

Nickel 

2t 0,59 
t t  0,69 
6,9 0,79 
4,t 0,86 
t,8 0,86 

As an example we calculate the flow parameters for rivulets of water over a vertical 
wall and rivulets of molten nickel on a rapidly rotating horizontal disk. For water 9 = 103 
kg/m ~, v = 10 -6 m2/sec, a = 9.8 m/see 2, Q = i0-" ma/sec, and for nickel at 1800 K, 9 = 6.4" 
10 -7 m2/sec, disk radius is i0 -I m, and the number of revolutions is 104.7 rad/sec, Q = i0 -9 
m3/sec (Table 3). The radio of Coriolis to centrifugal acceleration is estimated from 

2or __ 2v 2(  ~'~ )I]2 UQ(~) = 2 (  Q.~I/~ 
o ~ r  - -  o - 7  - =  - -  o - - 7 - -  \ v r /  UQ(~),  a = ~ 2 r .  

The maximum of ratio 2v/mr = 0.16 is achieved with ~ = 150 ~ . In [I, 2, 5, 6] the two- 
dimensional w~locity field is found in the form v = v[y/6(x)], where the parabolic profile 
is taken from the solution for the unidimensional problem for a film. With this choice of 
velocity field the boundary condition at the free rivulet surface is not observed. 

2. 

3. 

4. 

5. 
6. 
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PERTURBATION METHOD COMPUTATION OF THE MAXIMAL GROUP VELOCITIES OF 

INTERNAL WAVES IN A STRATIFIED MEDIUM WITH MEAN SHEAR FLOWS 

V. A. Borovikov and E. S. Levchenko UDC 551.466 

Propagation of internal gravitational waves excited in a stratified fluid layer -H < 
z < 0, -~ < x, y < ~ with mean horizontal shear flows is described by the equation [I] 

Lu(t,  x, y ,  z, Zo) = Q(t, x, y ,  z, Zo), u = O(z = O, - - H ) ,  ( 1 )  

where the operator is 

L= t ~ La~+--+a. 2 -~TV=~+K,W +m ~+~ ; 
D a u a a 

D--t = o-T + Ox + V--~y ; 

O = U(z), V = V(z) are the velocity components of the mean flow U = {O, V, 0} at the horizon 
z, and N(z) is the Brunt-V~is~l~ frequency. The Boussinesq and solid covers are used. The 
Miles stability condition Ri(z) = N2(z)/[(Uz )2 + (Vz)2] > 1/4 is assumed satisfied and 
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